Aerial Single-view Depth Completion: Code + Datasets + Simulator

Aerial Single-​View Depth Completion with Image-​Guided Uncertainty Estimation

With mapping for autonomous driving experiencing great boost with the use of deep-​​learning techniques, typical approaches have been using LIDAR measurements as seeds for image-​​based depth completion. The uncertainty of using vision-​based SLAM points as seeds instead, on top of the large viewpoint variations experienced in aerial mapping, however, are still posing major challenges for learning-​​based mapping approaches. Inspired by these shortcomings, we propose a powerful new methodology for single-​​view depth completion providing also confidence values for all scene-​depth estimates produced. This approach is shown to cope well with the challenges of scene perception from aerial platforms, such as large viewpoint changes, large depth variations, and limited computational resources. 

We present evaluations on existing benchmarking datasets as well as new, challenging, photo-​realistic datasets exhibiting a wide range of viewpoints as experienced typically by UAVs with depth and pose ground-​​truth information per image. Our results show that our network trained on our photo-​realistic datasets can be directly deployed on real-​​world outdoor aerial public datasets without fine-​​tuning or style transfer. Finally, we also release our simulator that was used to create such aerial datasets.

We are excited to publicly releast the following results of this work:

  • Codebase for aerial, single-​view depth completion and uncertainty estimation: link
  • Challenging and photo-​realistic Datasets exhibiting a wide range of viewpoints as experienced by UAV: link
  • Visual-​inertial Simulator created for building such aerial datasets, integrating Gazebo, Blender and a UAV Physical library: link

Users of this software/datasets are asked to cite the following letter, where they were introduced:

Lucas Teixeira, Martin R. Oswald, Marc Pollefeys, Margarita Chli, "Aerial Single-​View Depth Completion with Image-​Guided Uncertainty Estimation" in Robotics and Automation Letters (RA-​L), 2020.DOI Research Collection

V4RL

The Vision for Robotics Laboratory focuses on robotic vision-based perception. The group works with small Unmanned Aerial Vehicles (UAVs) in particular, as they are some of the most challenging robotic platforms, however, our research can be applied on any robot in need of perceiving its motion and/or workspace.

Contact

LEE H 304
Vision for Robotics Lab, IRIS, D-MAVT
ETH Zurich
Leonhardstrasse 21
CH-8092 Zurich
Switzerland

Tel: +41 (0)44 632 0838
Fax: +41 (0)44 632 1181
Email: chlim (at) ethz.ch

© Copyright – V4RL 2024.
  • Andorra +376
  • United arab emirates +971
  • Afghanistan +93
  • Antigua and barbuda +1268
  • Anguilla +1264
  • Albania +355
  • Armenia +374
  • Angola +244
  • Antarctica +672
  • Argentina +54
  • American samoa +1684
  • Austria +43
  • Australia +61
  • Aruba +297
  • Azerbaijan +994
  • Bosnia and herzegovina +387
  • Barbados +1246
  • Bangladesh +880
  • Belgium +32
  • Burkina faso +226
  • Bulgaria +359
  • Bahrain +973
  • Burundi +257
  • Benin +229
  • Saint barthelemy +590
  • Bermuda +1441
  • Brunei darussalam +673
  • Bolivia +591
  • Brazil +55
  • Bahamas +1242
  • Bhutan +975
  • Botswana +267
  • Belarus +375
  • Belize +501
  • Canada +1
  • Cocos (keeling) islands +61
  • Congo, the democratic republic of the +243
  • Central african republic +236
  • Congo +242
  • Switzerland +41
  • Cote d ivoire +225
  • Cook islands +682
  • Chile +56
  • Cameroon +237
  • China +86
  • Colombia +57
  • Costa rica +506
  • Cuba +53
  • Cape verde +238
  • Christmas island +61
  • Cyprus +357
  • Czech republic +420
  • Germany +49
  • Djibouti +253
  • Denmark +45
  • Dominica +1767
  • Dominican republic +1809
  • Algeria +213
  • Ecuador +593
  • Estonia +372
  • Egypt +20
  • Eritrea +291
  • Spain +34
  • Ethiopia +251
  • Finland +358
  • Fiji +679
  • Falkland islands (malvinas) +500
  • Micronesia, federated states of +691
  • Faroe islands +298
  • France +33
  • Gabon +241
  • United kingdom +44
  • Grenada +1473
  • Georgia +995
  • Ghana +233
  • Gibraltar +350
  • Greenland +299
  • Gambia +220
  • Guinea +224
  • Equatorial guinea +240
  • Greece +30
  • Guatemala +502
  • Guam +1671
  • Guinea-bissau +245
  • Guyana +592
  • Hong kong +852
  • Honduras +504
  • Croatia +385
  • Haiti +509
  • Hungary +36
  • Indonesia +62
  • Ireland +353
  • Israel +972
  • Isle of man +44
  • India +91
  • Iraq +964
  • Iran, islamic republic of +98
  • Iceland +354
  • Italy +39
  • Jamaica +1876
  • Jordan +962
  • Japan +81
  • Kenya +254
  • Kyrgyzstan +996
  • Cambodia +855
  • Kiribati +686
  • Comoros +269
  • Saint kitts and nevis +1869
  • Korea democratic peoples republic of +850
  • Korea republic of +82
  • Kuwait +965
  • Cayman islands +1345
  • Kazakstan +7
  • Lao peoples democratic republic +856
  • Lebanon +961
  • Saint lucia +1758
  • Liechtenstein +423
  • Sri lanka +94
  • Liberia +231
  • Lesotho +266
  • Lithuania +370
  • Luxembourg +352
  • Latvia +371
  • Libyan arab jamahiriya +218
  • Morocco +212
  • Monaco +377
  • Moldova, republic of +373
  • Montenegro +382
  • Saint martin +1599
  • Madagascar +261
  • Marshall islands +692
  • Macedonia, the former yugoslav republic of +389
  • Mali +223
  • Myanmar +95
  • Mongolia +976
  • Macau +853
  • Northern mariana islands +1670
  • Mauritania +222
  • Montserrat +1664
  • Malta +356
  • Mauritius +230
  • Maldives +960
  • Malawi +265
  • Mexico +52
  • Malaysia +60
  • Mozambique +258
  • Namibia +264
  • New caledonia +687
  • Niger +227
  • Nigeria +234
  • Nicaragua +505
  • Netherlands +31
  • Norway +47
  • Nepal +977
  • Nauru +674
  • Niue +683
  • New zealand +64
  • Oman +968
  • Panama +507
  • Peru +51
  • French polynesia +689
  • Papua new guinea +675
  • Philippines +63
  • Pakistan +92
  • Poland +48
  • Saint pierre and miquelon +508
  • Pitcairn +870
  • Puerto rico +1
  • Portugal +351
  • Palau +680
  • Paraguay +595
  • Qatar +974
  • Romania +40
  • Serbia +381
  • Russian federation +7
  • Rwanda +250
  • Saudi arabia +966
  • Solomon islands +677
  • Seychelles +248
  • Sudan +249
  • Sweden +46
  • Singapore +65
  • Saint helena +290
  • Slovenia +386
  • Slovakia +421
  • Sierra leone +232
  • San marino +378
  • Senegal +221
  • Somalia +252
  • Suriname +597
  • Sao tome and principe +239
  • El salvador +503
  • Syrian arab republic +963
  • Swaziland +268
  • Turks and caicos islands +1649
  • Chad +235
  • Togo +228
  • Thailand +66
  • Tajikistan +992
  • Tokelau +690
  • Timor-leste +670
  • Turkmenistan +993
  • Tunisia +216
  • Tonga +676
  • Turkey +90
  • Trinidad and tobago +1868
  • Tuvalu +688
  • Taiwan, province of china +886
  • Tanzania, united republic of +255
  • Ukraine +380
  • Uganda +256
  • United states +1
  • Uruguay +598
  • Uzbekistan +998
  • Holy see (vatican city state) +39
  • Saint vincent and the grenadines +1784
  • Venezuela +58
  • Virgin islands, british +1284
  • Virgin islands, u.s. +1340
  • Viet nam +84
  • Vanuatu +678
  • Wallis and futuna +681
  • Samoa +685
  • Kosovo +381
  • Yemen +967
  • Mayotte +262
  • South africa +27
  • Zambia +260
  • Zimbabwe +263