Wide-baseline Place Recognition Dataset

This dataset provides sequences from two synthetic and two real outdoor scenes with visual, inertial, and ground-​truth information, specifically recorded for place recognition tasks. The real datasets exhibit not only significant challenges in viewpoint, but also illumination and situational changes. The synthetic datasets are recorded on scenes generated with photogrammetric reconstruction with camera trajectories generated with a physical simulator of a small aircraft to produce realistic aerial sequences exhibiting viewpoint changes, which at times are very strong (i.e. wide-​baseline). To the best of our knowledge these synthetic datasets are the first to isolate the challenge of viewpoint changes from all others (i.e. variations in scale, scene dynamicity and illumination), aiding the benchmarking of place recognition methods with respect to viewpoint tolerance.

The real datasets were recorded with a side-​looking camera from both aerial and handheld setups in order to revisit the same scene from very different viewpoints. All the real sequences were recorded using a high-​quality visual-​inertial sensor providing monocular, grayscale, global-​shutter images at 20 Hz and time-​synchronized inertial measurements. The synthetic datasets contain visual and inertial measurements reproducing the same setup as in the real datasets. This dataset is freely available and can be downloaded here.

Users of this dataset are asked to cite the following paper, where it was originally made publicly available:

Fabiola Maffra, Lucas Teixeira, Zetao Chen and Margarita Chli, “Real-​time Wide-​baseline Place Recognition using Depth Completion”, in IEEE Robotics and Automation Letters, 2019. DOI Research Collection

V4RL

The Vision for Robotics Laboratory focuses on robotic vision-based perception. The group works with small Unmanned Aerial Vehicles (UAVs) in particular, as they are some of the most challenging robotic platforms, however, our research can be applied on any robot in need of perceiving its motion and/or workspace.

Contact

LEE H 304
Vision for Robotics Lab, IRIS, D-MAVT
ETH Zurich
Leonhardstrasse 21
CH-8092 Zurich
Switzerland

Tel: +41 (0)44 632 0838
Fax: +41 (0)44 632 1181
Email: chlim (at) ethz.ch

© Copyright – V4RL 2024.
  • Andorra +376
  • United arab emirates +971
  • Afghanistan +93
  • Antigua and barbuda +1268
  • Anguilla +1264
  • Albania +355
  • Armenia +374
  • Angola +244
  • Antarctica +672
  • Argentina +54
  • American samoa +1684
  • Austria +43
  • Australia +61
  • Aruba +297
  • Azerbaijan +994
  • Bosnia and herzegovina +387
  • Barbados +1246
  • Bangladesh +880
  • Belgium +32
  • Burkina faso +226
  • Bulgaria +359
  • Bahrain +973
  • Burundi +257
  • Benin +229
  • Saint barthelemy +590
  • Bermuda +1441
  • Brunei darussalam +673
  • Bolivia +591
  • Brazil +55
  • Bahamas +1242
  • Bhutan +975
  • Botswana +267
  • Belarus +375
  • Belize +501
  • Canada +1
  • Cocos (keeling) islands +61
  • Congo, the democratic republic of the +243
  • Central african republic +236
  • Congo +242
  • Switzerland +41
  • Cote d ivoire +225
  • Cook islands +682
  • Chile +56
  • Cameroon +237
  • China +86
  • Colombia +57
  • Costa rica +506
  • Cuba +53
  • Cape verde +238
  • Christmas island +61
  • Cyprus +357
  • Czech republic +420
  • Germany +49
  • Djibouti +253
  • Denmark +45
  • Dominica +1767
  • Dominican republic +1809
  • Algeria +213
  • Ecuador +593
  • Estonia +372
  • Egypt +20
  • Eritrea +291
  • Spain +34
  • Ethiopia +251
  • Finland +358
  • Fiji +679
  • Falkland islands (malvinas) +500
  • Micronesia, federated states of +691
  • Faroe islands +298
  • France +33
  • Gabon +241
  • United kingdom +44
  • Grenada +1473
  • Georgia +995
  • Ghana +233
  • Gibraltar +350
  • Greenland +299
  • Gambia +220
  • Guinea +224
  • Equatorial guinea +240
  • Greece +30
  • Guatemala +502
  • Guam +1671
  • Guinea-bissau +245
  • Guyana +592
  • Hong kong +852
  • Honduras +504
  • Croatia +385
  • Haiti +509
  • Hungary +36
  • Indonesia +62
  • Ireland +353
  • Israel +972
  • Isle of man +44
  • India +91
  • Iraq +964
  • Iran, islamic republic of +98
  • Iceland +354
  • Italy +39
  • Jamaica +1876
  • Jordan +962
  • Japan +81
  • Kenya +254
  • Kyrgyzstan +996
  • Cambodia +855
  • Kiribati +686
  • Comoros +269
  • Saint kitts and nevis +1869
  • Korea democratic peoples republic of +850
  • Korea republic of +82
  • Kuwait +965
  • Cayman islands +1345
  • Kazakstan +7
  • Lao peoples democratic republic +856
  • Lebanon +961
  • Saint lucia +1758
  • Liechtenstein +423
  • Sri lanka +94
  • Liberia +231
  • Lesotho +266
  • Lithuania +370
  • Luxembourg +352
  • Latvia +371
  • Libyan arab jamahiriya +218
  • Morocco +212
  • Monaco +377
  • Moldova, republic of +373
  • Montenegro +382
  • Saint martin +1599
  • Madagascar +261
  • Marshall islands +692
  • Macedonia, the former yugoslav republic of +389
  • Mali +223
  • Myanmar +95
  • Mongolia +976
  • Macau +853
  • Northern mariana islands +1670
  • Mauritania +222
  • Montserrat +1664
  • Malta +356
  • Mauritius +230
  • Maldives +960
  • Malawi +265
  • Mexico +52
  • Malaysia +60
  • Mozambique +258
  • Namibia +264
  • New caledonia +687
  • Niger +227
  • Nigeria +234
  • Nicaragua +505
  • Netherlands +31
  • Norway +47
  • Nepal +977
  • Nauru +674
  • Niue +683
  • New zealand +64
  • Oman +968
  • Panama +507
  • Peru +51
  • French polynesia +689
  • Papua new guinea +675
  • Philippines +63
  • Pakistan +92
  • Poland +48
  • Saint pierre and miquelon +508
  • Pitcairn +870
  • Puerto rico +1
  • Portugal +351
  • Palau +680
  • Paraguay +595
  • Qatar +974
  • Romania +40
  • Serbia +381
  • Russian federation +7
  • Rwanda +250
  • Saudi arabia +966
  • Solomon islands +677
  • Seychelles +248
  • Sudan +249
  • Sweden +46
  • Singapore +65
  • Saint helena +290
  • Slovenia +386
  • Slovakia +421
  • Sierra leone +232
  • San marino +378
  • Senegal +221
  • Somalia +252
  • Suriname +597
  • Sao tome and principe +239
  • El salvador +503
  • Syrian arab republic +963
  • Swaziland +268
  • Turks and caicos islands +1649
  • Chad +235
  • Togo +228
  • Thailand +66
  • Tajikistan +992
  • Tokelau +690
  • Timor-leste +670
  • Turkmenistan +993
  • Tunisia +216
  • Tonga +676
  • Turkey +90
  • Trinidad and tobago +1868
  • Tuvalu +688
  • Taiwan, province of china +886
  • Tanzania, united republic of +255
  • Ukraine +380
  • Uganda +256
  • United states +1
  • Uruguay +598
  • Uzbekistan +998
  • Holy see (vatican city state) +39
  • Saint vincent and the grenadines +1784
  • Venezuela +58
  • Virgin islands, british +1284
  • Virgin islands, u.s. +1340
  • Viet nam +84
  • Vanuatu +678
  • Wallis and futuna +681
  • Samoa +685
  • Kosovo +381
  • Yemen +967
  • Mayotte +262
  • South africa +27
  • Zambia +260
  • Zimbabwe +263